高効率LPG 合成プロセスの開発

令和3年2月26日 一般社団法人HiBD研究所 藤元 薫

Synthetic fuels passing through syngas

Japan Gas Synthesis CO. LTD, Japan

DME合成技術の開発経過

DME100トン/日実証プラント全景

Mechanism

$(Pd/Cr-Zn)/\beta$ -Zeolite

$(Pd/Cr-Zn)/Pd-\beta$ -Zeolite

1 Methanol Synthesis from CO₂ / H₂

Reaction path of CO_2/H_2 to CH_3OH

Results of Hydrocarbon Synthesis from Syngas with Different Zeolites Combined with Cu-Zn Methanol Catalyst

Catalyst	USY	β -zeolite	ZSM-5	Mordenite	MCM22
Catalyst	Cu-Zn	Cu-Zn	Cu-Zn	Cu-Zn	Cu-Zn
Product Yield (%CO Feed)					
Hydrocarbons	37.6	31.5	38.5	3.4	26.8
DME	1.5	4.7	0.9	11.3	2.6
C ₃ +C ₄ % in Hydrocarbon (C%)	76.1	72.8	54.6	39.8	59.2

(1) CO to LPG The effect of H_2 to CO

Reduction conditions: T---250 °C; Flow---60ml/min; H_2/N_2 ---1:10

 CO_2 conversion to LPG

T---260 °C, 2MPa, H2/CO2=5,Flow---40ml/min

Japan Gas Synthesis CO. LTD, Japan

Reaction condition on two stage reactor-2

H/C ratio and W/F

反応条件、P=3.0MPa、T=260 °C, H2/C=3mol/mol. Feedgas: CO/CO2/Ar—16.1/ 15.98/3.03

CO2 Content in reactant

反応条件、P=3.0MPa、T=260 °C, H2/C=3mol/mol. W/F=20 h.g/mol

One stage vise two stage reactor

One stage

Two stage

反応条件、T=260°C、W/F=20 h.g/mol, H2/C---mol/mol. Feedgas: CO/CO2/Ar—16.1/ 15.98/3.03

Fig. 3. Effect of W/F on hydrocarbon selectivity and iso-butane/n-butane ratio over CZZA/Pd- β catalyst. Synthesis gas: H₂/CO/CO₂ =8/3/1 (molar ratio). Reaction conditions: T=260°C, P=2.0 MPa.

2.2 LPG Synthesis from CO_2/H_2

新しい触媒の低温再生

低温再生(400℃)

反応条件、P=2.0MPa、T=260 °C, W/F=10 h.g/mol, H2/C=2 mol/mol. Feedgas: CO/CO2/Ar/H2—28/4/4.0/64

The Bench scale plant

A bench plant (~100ml catalyst bed) was operated successfully to show 1.0kg/day LPG production.

Results of Bench Plant

100g catalyst

反応条件; 触媒 Cu-Zn/ゼオライト 100g

(Si/Al=37、比率 0.7/1)

充填長 90cm

W/F=6、圧力 3MPa

生産速度(g/d)

	-			
温度	290°C	300°C	310℃	320°C
C1	5.4	9.3	14.3	21.6
C2	12.3	18.1	23.6	28.9
C3	92.4	139.5	179.0	226.2
DME	2.9	35.7	63.5	52.4
i-C4	394.7	439.2	443.5	417.2
n-C4	41.3	61.3	72.4	81.9
i—C5	73.9	74.4	69.9	60.9
n-C5	12.4	14.9	15.8	15.2
LPG	528.3	640.1	694.9	725.3
C3~C5	614.6	729.4	780.6	801.4
HC	635.2	792.5	882.1	904.3

The Fluidized Bed Reactor

本研究で提案するプロセスの概要・特徴

- ▶ 多様なバイオマスに広く適用可能
 - ➤ エネルギー収率・CO₂削減効果が大きい
 - ▶ 反応器を単純化できるためプラントコストが安い
- ▶ ドライガス生成が少なく、生成液体がそのまま製品となるため、二次処理費用が少ない
- ▶ オフガスが高圧であるためエネルギーを回収・利 用でき、製造コストが大幅に削減できる

1. syngas

反応条件、P=2.0MPa、W/F=10 h.g/mol, H2/C=2 mol/mol. Feedgas: CO/CO2/Ar/H2-28/4/4.0/64

Composition of product hydrocarbons		LPG 組成 (wt%)		
C3	24.51	プロパン	20	
C4	60.93	ブタン	65	
C1	0.674	C5+	15	
C2	2.577			
C5	8.699			
C6	2.207			
C7	0.402			

反応条件、P=2.0MPa、W/F=10 h.g/mol, H2/C= 1.2 mol/mol. Feedgas: CH4/CO/CO2/N2/H2-7.1/24.9/15.3/3.7/49

<u>グリーンLPG合成技術に関するまとめ</u>

- 1. バイオマス原料を改質して得られる合成ガスからLPG成分を2~3MPa、 250~300℃の条件下で高収率で得る反応システムを構築した。
- 2. 炭酸ガスと水素からも合成ガスからと同様にLPGを合成し得る。
- 3. ドライガス(C_1 、 C_2 パラフィン)の生成を1~2%以下に抑制しつつ、プロ パン、ブタンを90%近い選択率で合成し得る。
- 4. CO₂、COの混合ガスもほぼ定量的にLPGに変換し得る。
- 5. 平衡値をはるかに超えて高分岐パラフィンが生成する。
- 6. 触媒は1000時間以上再生なしで使用し得、in-situ再生が可能である。
- 7. 本研究は独自研究および(株)日本ガス合成と共同でJOGMECおよび NEDOのプロジェクトで実施した。

Cu-Zn/Pd- β catalysts for syngas to LPG

Reaction Mechanism

Results of Simulation (2)

- ·C0転化率~70%までは高 精度
- ·70~90でC4選択率に問題
- ·パラフィンの2次反応が 無視し得ない

Results of Simulation (1)

○ 温度の影響は正確に
シミュレートした。
○ 300℃以上の温度は

必要とない。